6 Qualitative data examples for thorough market researchers

There are plenty of ways to gather consumer insights for fresh campaigns and better products, but qualitative research is up there with the best sources of insight.

This guide is packed with examples of how to turn qualitative data into actionable insights, to spark your creativity and sharpen your research strategy. You’ll see how qualitative data, especially through surveys, opens doors to deeper understanding by inviting consumers to share their experiences and thoughts freely, in their own words — and how qualitative data can transform your brand.

Types of qualitative data in market research

Before we dig into some examples of how qualitative data can empower your teams to make focused, confident and quick decisions on anything from product to marketing, let’s go back to basics. We can categorize qualitative data into roughly three categories: binary, nominal and ordinal data. Here’s how each of them is used in qualitative data analysis.

Binary data

Binary data represents a choice between two distinct options, like ‘yes’ or ‘no’. In market research, this type of qualitative data is useful for filtering responses or making clear distinctions in consumer preferences.

Binary data in qualitative research is great for straightforward insights, but has its limits. Here’s a quick guide on when to use it and when to opt for qualitative data that is more detailed:

Binary data is great for:

  • Quick Yes/No questions: like “Have you used our app? Yes or No.”
  • Initial screening: to quickly sort participants for further studies.
  • Clear-cut answers: absolute factors, such as ownership or usage.

Avoid binary data for:

  • Understanding motivations: it lacks the depth to explore why behind actions.
  • Measuring intensity: can’t show how much someone likes or uses something.
  • Detail needed for product development: misses the nuanced feedback necessary for innovations.
Tip: Like quantitative data, binary data is best when combined with something stronger and contextual. Mix qualitative and quantitative research using methods like binary questions with open-ended follow-ups for depth, like asking “Why?” after a yes/no to get the best of both worlds.
Andrada Comsa
Principal Customer Research Manager

Nominal data

Nominal data categorizes responses without implying any order. For example, when survey respondents choose their favorite brand from a list, the data collected is nominal, offering insights into brand preferences among different demographics.

Some other examples of qualitative data that can be qualified as nominal are asking participants to name their primary information source about products in categories like social media, friends, or online reviews. Or in focus groups, discussing brand perceptions could classify brands into categories such as luxury, budget-friendly, or eco-conscious, based on participant descriptions.

Nominal data is great for:

  • Categorizing responses: such as types of consumer complaints (product quality, customer service, delivery issues).
  • Identifying preferences: like favorite product categories (beverages, electronics, apparel).
  • Segmentation: grouping participants based on attributes (first-time buyers, loyal customers).

Nominal data is not for:

  • Measuring quantities: it can’t quantify how much more one category is preferred over another.
  • Ordering or ranking responses: it doesn’t indicate which category is higher or lower in any hierarchy.
  • Detailed behavioral analysis: While it can group behaviors, it doesn’t delve into the frequency or intensity of those behaviors.
Tip: Combine nominal data with other qualitative data collection and analysis methods, like open-ended questions or observations to enrich the insights, and throw in some quantitative data to back up any claims even more. For instance, after categorizing product preferences, follow up with questions on why certain categories are preferred, which will add layers to the understanding gained from nominal data alone.
Sam Killip
VP Customer Success

Ordinal data

Ordinal data introduces a sense of order, ranking preferences or satisfaction levels. In qualitative analysis, it’s particularly useful for understanding how consumers prioritize features or products, giving researchers a clearer picture of market trends.

Other examples of qualitative data analyses that use ordinal data, are for instance a study on consumer preferences for coffee flavors, participants might rank flavors in order of preference, providing insights into flavor trends. You can also get ordinal data from focus groups on things like customer satisfaction surveys or app usability, by asking users to rate their ease of use or happiness on an ordinal scale.

Ordinal data is great for:

  • Ranking preferences: asking participants to rank product features from most to least important.
  • Measuring satisfaction levels: using scales like “very satisfied,” “satisfied,” “neutral,” “dissatisfied,” “very dissatisfied.”
  • Assessing Agreement: with statements on a scale from “strongly agree” to “strongly disagree.”

Ordinal data is not for:

  • Quantifying differences: it doesn’t show how much more one rank is preferred over another, just the order.
  • Precise measurements: can’t specify the exact degree of satisfaction or agreement, only relative positions.
Tip: To gain richer insights that you can draw conclusions from, follow up ordinal rankings with open-ended questions to get qualitative data that explains the reasons behind the rankings, and make sure to provide quantitative data to support any analysis as well.
Nick White
Customer Research Lead

This mix of qualitative and quantitative data will give you a well-rounded view of participant attitudes and preferences.

6 Qualitative data examples

The things you can do with qualitative data are endless. But this article shouldn’t turn into a work of literature, so we’ll highlight six ways to collect qualitative data and give you examples of how to use these qualitative research methods to get actionable results.

How to get qual insights with Attest

You can get to the heart of what your target customers think, with reliable qualitative insights from Attest Video Responses

See how it works

1. Highlighting brand loyalty drivers with open-ended surveys and questionnaires

Open-ended surveys and questionnaires are great at finding out what makes customers choose and stick with a brand. Here’s why this qualitative data analysis tool is so good for gathering qualitative data on things like brand loyalty and customer experience:

Straight from the source

Open-ended survey responses show the actual thoughts and feelings of your target audience in their own words, while still giving you structure in your data analysis.

Understanding ‘why’

Numbers can show us how many customers are loyal; open-ended survey responses explain why they are. You can also easily add thematic analysis to the mix by counting certain keywords or phrases.

Understanding the ‘why’ is important across industries too. Make sure you figure out what your research goals are when you’re looking for your provider, whether you’re looking for food and beverage or automotive market research companies, and anything in between.

Guiding decisions

The insights from these surveys can help a brand decide where to focus its efforts, from making sure their marketing highlights what customers love most to improving parts of their product.

Surveys are one of the most versatile and efficient qualitative data collection methods out there. We want to bring the power of qualitative data analysis to every business and make it easy to gather qualitative data from the people who matter most to your brand. Check out our survey templates to hit the ground running. And you’re not limited to textual data as your only data source — we also enable you to gather video responses to get additional context from non verbal cues and more.

2. Trend identification with observation notes

Observation notes are a powerful qualitative data analysis tool for spotting trends as they naturally unfold in real-world settings. Here’s why they’re particularly valuable insights and effective for identifying new trends:

Real behavior

Observing people directly shows us how they actually interact with products or services, not just how they say they do. This can highlight emerging trends in consumer behavior or preferences before people can even put into words what they are doing and why.

Immediate insights

By watching how people engage with different products, we can quickly spot patterns or changes in behavior. This immediate feedback is invaluable for catching trends as they start.

Context matters

Observations give you context. You can see not just what people do, but where and how they do it. This context can be key to understanding why a trend is taking off.

Unprompted reactions

Since people don’t know they’re being observed for these purposes, their actions are genuine. This leads to authentic insights about what’s really catching on.

3. Understanding consumer sentiments through semi-structured interviews

Semi-structured interviews for qualitative data analysis are an effective method for data analysts to get a deep understanding of consumer sentiments. It provides a structured yet flexible approach to gather in-depth insights. Here’s why they’re particularly useful for this type of research question:

Personal connection

These interviews create a space for a real conversation, allowing consumers to share their feelings, experiences, and opinions about a brand or product in a more personal setting.

Flexibility

The format lets the interviewer explore interesting points that come up during the conversation, diving deeper into unexpected areas of discussion. This flexibility uncovers richer insights than strictly structured interviews.

Depth of understanding

By engaging in detailed discussions, brands can understand not just what consumers think but why they think that way and what stations their train of thought passes by.

Structure and surprise

Semi-structured interviews can be tailored to explore specific areas of interest while still allowing for new insights to emerge.

4. Using focus groups for informing market entry strategies

Using a focus group to inform market entry strategies provides a dynamic way to discover your potential customers’ needs, preferences, and perceptions before launching a product or entering a new market. Here’s how focus groups can be particularly effective for this kind of research goal:

Real conversations

Focus groups allow for real-time, interactive discussions, giving you a front-row seat to hear what your potential customers think and feel about your product or service idea.

Diverse Perspectives

By bringing together people from various backgrounds, a focus group can offer a wide range of views and insights, highlighting different consumer needs and contextual information that you might miss out on in a survey.

Spotting opportunities and challenges

The dynamic nature of focus groups can help uncover unique market opportunities or potential challenges that might not be evident through other research methods, like cultural nuances.

Testing ideas

A focus group is a great way to test and compare reactions to different market entry strategies, from pricing models to distribution channels, providing clear direction on what approach might work best.

5. Case studies to gain a nuanced understanding of consumers on a broad level

Case studies in qualitative research zoom in on specific stories from customers or groups using a product or service, great for gaining a nuanced understanding of consumers at a broad level. Here’s why case studies are a particularly effective qualitative data analysis tool for this type of research goal:

In-depth analysis

Case studies can provide a 360-degree look at the consumer experience, from initial awareness to post-purchase feelings.

This depth of insight reveals not just what consumers do, but why they do it, uncovering motivations, influences, and decision-making processes.

Longitudinal insight

Case studies can track changes in consumer behavior or satisfaction over time, offering a dynamic view of how perceptions evolve.

This longitudinal perspective is crucial for giving context to the lifecycle of consumer engagement with a brand.

Storytelling power

The narrative nature of case studies — when done right — makes them powerful tools for communicating complex consumer insights in an accessible and engaging way, which can be especially useful for internal strategy discussions or external marketing communications.

6. Driving product development with diary studies

Diary studies are a unique qualitative research method that involves participants recording their thoughts, experiences, or behaviors over a period of time, related to using a product or service. This qualitative data analysis method is especially valuable for driving product development for several reasons:

Real-time insights

Diary studies capture real-time user experiences and feedback as they interact with a product in their daily lives.

This ongoing documentation provides a raw, unfiltered view of how a product fits into the user’s routine, highlighting usability issues or unmet needs that might not be captured in a one-time survey or interview.

Realistic user journey mapping

By analyzing diary entries, you can map out the entire user journey, identifying critical touch points where users feel delighted, frustrated, or indifferent.

This then enables you to implement targeted improvements and innovations at the moments that matter most.

Identifying patterns

Over the course of a diary study, patterns in behavior, preferences, and challenges can emerge, which is great for thematic analysis.

It can guide product developers to prioritize features or fixes that will have the most significant impact on user satisfaction, which is especially great if they don’t know what areas to focus on first.

Get nuanced insights from qualitative market research

Qualitative research brings your consumers’ voices directly to your strategy table. The examples we’ve explored show how qualitative data analysis methods like surveys, interviews, and case studies illuminate the ‘why’ behind consumer choices, guiding more informed decisions.

Using these insights means crafting products and messages that resonate deeply, ensuring your brand not only meets but exceeds consumer expectations.

How to get qual insights with Attest

You can get to the heart of what your target customers think, with reliable qualitative insights from Attest Video Responses

See how it works

Liam Leahy

Customer Research Manager 

See all articles by Liam